z-logo
open-access-imgOpen Access
RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae.
Author(s) -
G Kyrion,
Ke Liu,
Cheng Liu,
Arthur J. Lustig
Publication year - 1993
Publication title -
genes and development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.136
H-Index - 438
eISSN - 1549-5477
pISSN - 0890-9369
DOI - 10.1101/gad.7.7a.1146
Subject(s) - telomere , biology , saccharomyces cerevisiae , rap1 , genetics , position (finance) , position effect , microbiology and biotechnology , telomere binding protein , dna binding protein , gene , transcription factor , finance , economics
To investigate the role of the yeast telomere-, silencing-, and UAS-binding protein RAP1 in telomere position effects, we have characterized two sets of mutant cells: (1) a set of rap1 alleles (termed the rap1t alleles) that produce truncated RAP1 proteins missing the carboxy-terminal 144-165 amino acids; and (2) null mutants of the RIF1 gene, encoding a protein capable of interaction with the carboxyl terminus of RAP1. The data presented here indicate that loss of the carboxyl terminus of RAP1 abolishes position effects at yeast telomeres and diminishes silencing at the HML locus. Elimination of position effects in these cells is associated with increased accessibility to the Escherichia coli dam methylase in vivo. Thus, the carboxy-terminal domain of RAP1 is required for telomere position effects. In contrast, rif1 deletion alleles increase the frequency of repressed cells. Using the rap1t alleles to generate wild-type cells differing only in telomere tract lengths, we also show that telomere position effects are highly sensitive to changes in the size (or structure) of the telomeric tract. Longer poly(G1-3T) tracts can increase the frequency of transcriptional repression at the telomere, suggesting that telomeric poly(G1-3T) tracts play an active role in the formation or stability of subtelomeric transcriptional states.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here