z-logo
open-access-imgOpen Access
Epigenetic regulation of gene expression by Drosophila Myb and E2F2–RBF via the Myb–MuvB/dREAM complex
Author(s) -
Hong Wen,
Laura Andrejka,
Jonathan Ashton,
Roger E. Karess,
Joseph S. Lipsick
Publication year - 2008
Publication title -
genes and development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.136
H-Index - 438
eISSN - 1549-5477
pISSN - 0890-9369
DOI - 10.1101/gad.1626308
Subject(s) - biology , myb , microbiology and biotechnology , gene expression , gene , genetics
The Drosophila Myb oncoprotein, the E2F2 transcriptional repressor, and the RBF and Mip130/LIN-9 tumor suppressor proteins reside in a conserved Myb–MuvB (MMB)/dREAM complex. We now show that Myb is required in vivo for the expression of Polo kinase and components of the spindle assembly checkpoint (SAC). Surprisingly, the highly conserved DNA-binding domain was not essential for assembly of Myb into MMB/dREAM, for transcriptional regulation in vivo, or for rescue of Myb -null mutants to adult viability. E2F2, RBF, and Mip130/LIN-9 acted in opposition to Myb by repressing the expression of Polo and SAC genes in vivo. Remarkably, the absence of both Myb and Mip130, or of both Myb and E2F2, caused variegated expression in which high or low levels of Polo were stably inherited through successive cell divisions in imaginal wing discs. Restoration of Myb resulted in a uniformly high level of Polo expression similar to that seen in wild-type tissue, whereas restoration of Mip130 or E2F2 extinguished Polo expression. Our results demonstrate epigenetic regulation of gene expression by Myb, Mip130/LIN-9, and E2F2–RBF in vivo, and also provide an explanation for the ability of Mip130 -null mutants to rescue the lethality of Myb -null mutants in vivo.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here