z-logo
open-access-imgOpen Access
The Impact of Genetic Variants on PTEN Molecular Functions and Cellular Phenotypes
Author(s) -
Nicholas Hasle,
Kenneth A. Matreyek,
Douglas M. Fowler
Publication year - 2019
Publication title -
cold spring harbor perspectives in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.853
H-Index - 105
eISSN - 2472-5412
pISSN - 2157-1422
DOI - 10.1101/cshperspect.a036228
Subject(s) - pten , tensin , phenotype , biology , computational biology , phosphatase , missense mutation , genetics , gene , pi3k/akt/mtor pathway , signal transduction , phosphorylation
Phosphatase and tensin homolog (PTEN) is a tumor suppressor that directly regulates a diverse array of cellular phenotypes, including growth, migration, morphology, and genome stability. How a single protein impacts so many important cellular processes remains a fascinating question. This question has been partially resolved by the characterization of a slew of missense variants that alter or eliminate PTEN's various molecular functions, including its enzymatic activity, subcellular localization, and posttranslational modifications. Here, we review what is known about how PTEN variants impact molecular function and, consequently, cellular phenotype. In particular, we highlight eight informative "sentinel variants" that abrogate distinct molecular functions of PTEN. We consider two published massively parallel assays of variant effect that measured the effect of thousands of PTEN variants on protein abundance and enzymatic activity. Finally, we discuss how characterization of clinically ascertained variants, establishment of clinical sequencing databases, and massively parallel assays of variant effect yield complementary datasets for dissecting PTEN 's role in disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom