z-logo
open-access-imgOpen Access
Function and Dysfunction of TMC Channels in Inner Ear Hair Cells
Author(s) -
David P. Corey,
Nurunisa Akyuz,
Jeffrey R. Holt
Publication year - 2018
Publication title -
cold spring harbor perspectives in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.853
H-Index - 105
eISSN - 2472-5412
pISSN - 2157-1422
DOI - 10.1101/cshperspect.a033506
Subject(s) - mechanotransduction , hair cell , stereocilia (inner ear) , inner ear , microbiology and biotechnology , ion channel , charybdotoxin , superfamily , chemistry , potassium channel , biology , anatomy , biophysics , genetics , gene , receptor
The TMC1 channel was identified as a protein essential for hearing in mouse and human, and recognized as one of a family of eight such proteins in mammals. The TMC family is part of a superfamily of seven branches, which includes the TMEM16s. Vertebrate hair cells express both TMC1 and TMC2. They are located at the tips of stereocilia and are required for hair cell mechanotransduction. TMC1 assembles as a dimer and its similarity to the TMEM16s has enabled a predicted tertiary structure with an ion conduction pore in each subunit of the dimer. Cysteine mutagenesis of the pore supports the role of TMC1 and TMC2 as the core channel proteins of a larger mechanotransduction complex that includes PCDH15 and LHFPL5, and perhaps TMIE, CIB2 and others.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom