z-logo
open-access-imgOpen Access
Hepatitis A Virus Capsid Structure
Author(s) -
David I. Stuart,
Jingshan Ren,
Xiangxi Wang,
Zihe Rao,
Elizabeth E. Fry
Publication year - 2018
Publication title -
cold spring harbor perspectives in medicine
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.853
H-Index - 105
eISSN - 2472-5412
pISSN - 2157-1422
DOI - 10.1101/cshperspect.a031807
Subject(s) - beijing , china , capsid , chinese academy of sciences , library science , virology , biology , virus , political science , law , computer science
Hepatitis A virus (HAV) has been enigmatic, evading detailed structural analysis for many years. Its recently determined high-resolution structure revealed an angular surface without the indentations often characteristic of receptor-binding sites. The viral protein 1 (VP1) β-barrel shows no sign of a pocket factor and the amino terminus of VP2 displays a "domain swap" across the pentamer interface, as in a subset of mammalian picornaviruses and insect picorna-like viruses. Structure-based phylogeny confirms this placement. These differences suggest an uncoating mechanism distinct from that of enteroviruses. An empty capsid structure reveals internal differences in VP0 and the VP1 amino terminus connected with particle maturation. An HAV/Fab complex structure, in which the antigen-binding fragment (Fab) appears to act as a receptor-mimic, clarifies some historical epitope mapping data, but some remain difficult to reconcile. We still have little idea of the structural features of enveloped HAV particles.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom