z-logo
open-access-imgOpen Access
Mechanism of Action and Resistance to Daptomycin inStaphylococcus aureusand Enterococci
Author(s) -
William R. Miller,
Arnold S. Bayer,
César A. Arias
Publication year - 2016
Publication title -
cold spring harbor perspectives in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.853
H-Index - 105
eISSN - 2472-5412
pISSN - 2157-1422
DOI - 10.1101/cshperspect.a026997
Subject(s) - daptomycin , antibiogram , medicine , staphylococcus aureus , methicillin resistant staphylococcus aureus , microbiology and biotechnology , antibiotic resistance , biology , vancomycin , genetics , antibiotics , bacteria
Lipopeptides are natural product antibiotics that consist of a peptide core with a lipid tail with a diverse array of target organisms and mechanisms of action. Daptomycin (DAP) is an example of these compounds with specific activity against Gram-positive organisms. DAP has become increasingly important to combat infections caused by Gram-positive bacteria because of the presence of multidrug resistance in these organisms, particularly in methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). However, emergence of resistance to DAP during therapy is a well-described phenomenon that threatens the clinical use of this antibiotic, limiting further the therapeutic options against both MRSA and VRE. This work will review the historical aspects of the development of DAP, as well as the current knowledge on its mechanism of action and pathways to resistance in a clinically relevant context.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom