z-logo
open-access-imgOpen Access
The Genetics ofC9orf72Expansions
Author(s) -
Ilse Gijselinck,
Marc Cruts,
Christine Van Broeckhoven
Publication year - 2017
Publication title -
cold spring harbor perspectives in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.853
H-Index - 105
eISSN - 2472-5412
pISSN - 2157-1422
DOI - 10.1101/cshperspect.a026757
Subject(s) - c9orf72 , trinucleotide repeat expansion , amyotrophic lateral sclerosis , anticipation (artificial intelligence) , frontotemporal lobar degeneration , genetics , biology , context (archaeology) , phenotype , disease , frontotemporal dementia , loss function , gene , bioinformatics , medicine , pathology , allele , dementia , paleontology , artificial intelligence , computer science
Repeat expansions in the promoter region of C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and related disorders of the ALS/frontotemporal lobar degeneration (FTLD) spectrum. Remarkable clinical heterogeneity among patients with a repeat expansion has been observed, and genetic anticipation over different generations has been suggested. Genetic factors modifying the clinical phenotype have been proposed, including genetic variation in other known disease genes, the genomic context of the C9orf72 repeat, and expanded repeat size, which has been estimated between 45 and several thousand units. The role of variability in normal and expanded repeat sizes for disease risk and clinical phenotype is under debate. Different pathogenic mechanisms have been proposed, including loss of function, RNA toxicity, and dipeptide repeat (DPR) protein toxicity resulting from abnormal translation of the expanded repeat, but the major mechanism is yet unclear.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom