Modern Vector Control
Author(s) -
Neil F. Lobo,
Nicole L. Achee,
John Greico,
Frank H. Collins
Publication year - 2017
Publication title -
cold spring harbor perspectives in medicine
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.853
H-Index - 105
eISSN - 2472-5412
pISSN - 2157-1422
DOI - 10.1101/cshperspect.a025643
Subject(s) - library science , philosophy , art , computer science
The rapid spread of mosquito resistance to currently available insecticides, and the current lack of an efficacious malaria vaccine are among many challenges that affect large-scale efforts for malaria control. As goals of malaria elimination and eradication are put forth, new vector-control paradigms and tools and/or further optimization of current vector-control products are required to meet public health demands. Vector control remains the most effective measure to prevent malaria transmission and present gains against malaria mortality and morbidity may be maintained as long as vector-intervention strategies are sustained and adapted to underlying vector-related transmission dynamics. The following provides a brief overview of vector-control strategies and tools either in use or under development and evaluation that are intended to exploit key entomological parameters toward driving down transmission.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom