Structural Biology of PrP Prions
Author(s) -
Gerald Stubbs,
Jan Stöhr
Publication year - 2016
Publication title -
cold spring harbor perspectives in medicine
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.853
H-Index - 105
eISSN - 2472-5412
pISSN - 2157-1422
DOI - 10.1101/cshperspect.a024455
Subject(s) - prion protein , gene isoform , protein folding , amyloid fibril , protein structure , amyloid (mycology) , mechanism (biology) , chemistry , computational biology , structural biology , protein aggregation , biophysics , biology , amyloid β , biochemistry , disease , medicine , physics , inorganic chemistry , pathology , quantum mechanics , gene
Prion diseases are characterized by the deposition of amyloids, misfolded conformers of the prion protein. The misfolded conformation is self-replicating, by a mechanism solely enciphered in the conformation of the protein. Because of low solubility and heterogeneous aggregate sizes, the detailed atomic structure of the infectious isoform is still unknown. Progress has, however, been made, and has allowed insights into the structural and disease-related mechanisms of prions. Many structural models have been proposed, and a number of them support a consensus trimeric β-helical model, significantly more complex than simple amyloid models. There is evidence that such complexity may be a necessary property of prion structure. Knowledge of the structure of prions will provide a greater understanding of the protein isoform conversion mechanism, and could eventually lead to rationally designed intervention strategies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom