z-logo
open-access-imgOpen Access
Disease Mechanisms ofC9ORF72Repeat Expansions
Author(s) -
Tania F. Gendron,
Leonard Petrucelli
Publication year - 2017
Publication title -
cold spring harbor perspectives in medicine
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.853
H-Index - 105
eISSN - 2472-5412
pISSN - 2157-1422
DOI - 10.1101/cshperspect.a024224
Subject(s) - disease , c9orf72 , medicine , computational biology , biology , dementia , frontotemporal dementia
G 4 C 2 repeat expansions within the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These bidirectionally transcribed expansions lead to (1) the accumulation of sense G 4 C 2 and antisense G 2 C 4 repeat-containing RNA, (2) the production of proteins of repeating dipeptides through unconventional translation of these transcripts, and (3) decreased C9ORF72 mRNA and protein expression. Consequently, there is ample opportunity for the C9ORF72 mutation to give rise to a spectrum of clinical manifestations, ranging from muscle weakness and atrophy to changes in behavior and cognition. It is thus somewhat surprising that investigations of these three seemingly disparate events often converge on similar putative pathological mechanisms. This review aims to summarize the findings and questions emerging from the field's quest to decipher how C9ORF72 repeat expansions cause the devastating diseases collectively referred to as "c9ALS/FTD."

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom