Assembly and Release of Hepatitis B Virus
Author(s) -
Lisa Selzer,
Adam Zlotnick
Publication year - 2015
Publication title -
cold spring harbor perspectives in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.853
H-Index - 105
eISSN - 2472-5412
pISSN - 2157-1422
DOI - 10.1101/cshperspect.a021394
Subject(s) - capsid , microbiology and biotechnology , rna , viral structural protein , viral protein , transcription (linguistics) , biology , viral entry , virology , virus , viral replication , chemistry , genetics , gene , linguistics , philosophy
The hepatitis B virus (HBV) core protein is a dynamic and versatile protein that directs many viral processes. During capsid assembly, core protein allosteric changes ensure efficient formation of a stable capsid that assembles while packaging viral RNA-polymerase complex. Reverse transcription of the RNA genome as well as transport of the capsid to multiple cellular compartments are directed by dynamic phosphorylation and structural changes of core protein. Subsequently, interactions of the capsid with the surface proteins and/or host proteins trigger envelopment and release of the viral capsids or the transport to the nucleus. Held together by many weak protein-protein interactions, the viral capsid is an extraordinary metastable machine that is stable enough to persist in the cellular and extracellular environment but dissociates to allow release of the viral genome at the right time during infection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom