Evolutionary Perspectives on Human Fungal Pathogens
Author(s) -
John W. Taylor
Publication year - 2014
Publication title -
cold spring harbor perspectives in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.853
H-Index - 105
eISSN - 2472-5412
pISSN - 2157-1422
DOI - 10.1101/cshperspect.a019588
Subject(s) - biology , evolutionary biology , genomics , population biology , human evolutionary genetics , population genetics , genetic variation , phylogenetics , population , dna sequencing , phenotype , comparative genomics , variation (astronomy) , genome , population genomics , genetics , gene , demography , physics , sociology , astrophysics
Owing to their small size and paucity of phenotypic characters, progress in the evolutionary biology of microbes in general, and human pathogenic fungi in particular, has been linked to a series of advances in DNA sequencing over the past quarter century. Phylogenetics was the first area to benefit, with the achievement of a basic understanding of fungal phylogeny. Population genetics was the next advance, finding cryptic species everywhere, and recombination in species previously thought to be asexual. Comparative genomics saw the next advance, in which variation in gene content and changes in gene family size were found to be important sources of variation. Fungal population genomics is showing that gene flow among closely related populations and species provides yet another source of adaptive, genetic variation. Now, two means to associate genetic variation with phenotypic variation, "reverse ecology" for adaptive phenotypes, and genome-wide association of any phenotype, are letting evolutionary biology make a profound contribution to molecular developmental biology of pathogenic fungi.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom