z-logo
open-access-imgOpen Access
Clinical Applications of Age-Related Macular Degeneration Genetics
Author(s) -
John Paul SanGiovanni,
Emily Y. Chew
Publication year - 2014
Publication title -
cold spring harbor perspectives in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.853
H-Index - 105
eISSN - 2472-5412
pISSN - 2157-1422
DOI - 10.1101/cshperspect.a017228
Subject(s) - macular degeneration , disease , medicine , bioinformatics , drug development , subtyping , precision medicine , computational biology , biology , drug , pathology , pharmacology , ophthalmology , computer science , programming language
Understanding genetic causes of age-related macular degeneration (AMD) will eventually yield effective discoveries and improvements in predictive/prognostic methods. These include, but are not limited to, reliable disease prediction (screening for increased discrimination of clinical risk), differential classification of AMD subtypes with biomarkers (development of risk-linked molecular taxonomies), selection of optimal preventive and therapeutic interventions (guided by a biologically meaningful understanding of treatment response), and drug dosing. In this review, we discuss clinical applications informed by key findings in AMD genetics, and provide commentary on leveraging extant and forthcoming evidence to improve AMD risk prediction, AMD classification, and knowledge on the genetic basis of drug activity and toxicity. Advances in translating AMD genetics findings for AMD risk prediction require development of a genetics-based causality for AMD incidence and progression. Molecular subtyping of AMD phenotypes requires a set of dynamic biomarkers presenting prognostic value; although these have yet to be identified, the formation of multidisciplinary teams and their participation in large-scale consortia may yield promising results. Drugs targeting complement and vascular endothelial growth factor (VEGF) systems are under evaluation, and forthcoming work on rare variants and noncoding DNA in AMD pathogenesis will likely reveal biochemical pathways enriched with AMD-associated genetic variants. Pharmacologic targets in these pathways may inform a rational and effective therapeutic approach to preventing and treating this sight-threatening disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom