z-logo
open-access-imgOpen Access
MYC and the Art of MicroRNA Maintenance
Author(s) -
James N. Psathas,
Andrei ThomasTikhonenko
Publication year - 2014
Publication title -
cold spring harbor perspectives in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.853
H-Index - 105
eISSN - 2472-5412
pISSN - 2157-1422
DOI - 10.1101/cshperspect.a014175
Subject(s) - medicine , microrna , center (category theory) , pathology , gerontology , biology , genetics , gene , chemistry , crystallography
MYC is a noncanonical transcription factor that binds to thousands of genomic loci and affects >15% of the human transcriptome, with surprisingly little overlap between MYC-bound and -regulated genes. This discordance raises the question whether MYC chooses its targets based on their individual biological effects ("a la carte") or by virtue of belonging to a certain group of genes (on a "prix fixe" basis). This review presents evidence for a prix fixe, posttranscriptional model whereby MYC initially deregulates a select number of microRNAs. These microRNAs then target a broad spectrum of genes based solely on the presence in their 3' UTRs (untranslated regions) of distinct "seed" sequences. Existing evidence suggests that there are significant microRNA components to all key MYC-driven phenotypes, including cell-cycle progression, apoptosis, metabolism, angiogenesis, metastasis, stemness, and hematopoiesis. Furthermore, each of these cell-intrinsic and -extrinsic phenotypes is likely attributable to deregulation of multiple microRNA targets acting in different, yet frequently overlapping, pathways. The habitual targeting of multiple genes within the same pathway might account for the robustness and persistence of MYC-induced phenotypes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom