Eye Safety Related to Near Infrared Radiation Exposure to Biometric Devices
Author(s) -
N. Kourkoumelis,
Margaret Tzaphlidou
Publication year - 2011
Publication title -
the scientific world journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.453
H-Index - 93
eISSN - 2356-6140
pISSN - 1537-744X
DOI - 10.1100/tsw.2011.52
Subject(s) - biometrics , infrared , non ionizing radiation , computer science , iris (biosensor) , optical radiation , light emitting diode , identification (biology) , modalities , radiation , legislation , optoelectronics , optics , materials science , computer vision , physics , biology , law , botany , social science , sociology , political science
Biometrics has become an emerging field of technology due to its intrinsic security features concerning the identification of individuals by means of measurable biological characteristics. Two of the most promising biometric modalities are iris and retina recognition, which primarily use nonionizing radiation in the infrared region. Illumination of the eye is achieved by infrared light emitting diodes (LEDs). Even if few LED sources are capable of causing direct eye damage as they emit incoherent light, there is a growing concern about the possible use of LED arrays that might pose a potential threat. Exposure to intense coherent infrared radiation has been proven to have significant effects on living tissues. The purpose of this study is to explore the biological effects arising from exposing the eye to near infrared radiation with reference to international legislation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom