The Behaviour of134Cs,60Co, and85Sr Radionuclides in Marine Environmental Sediment
Author(s) -
N. H. M. Kamel
Publication year - 2002
Publication title -
the scientific world journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.453
H-Index - 93
eISSN - 2356-6140
pISSN - 1537-744X
DOI - 10.1100/tsw.2002.290
Subject(s) - nitric acid , sediment , sorption , chemistry , oxalate , radionuclide , ammonium oxalate , environmental chemistry , aqueous solution , bromine , ammonium , adsorption , inorganic chemistry , nuclear chemistry , geology , paleontology , physics , organic chemistry , quantum mechanics
This work describes experimental investigations and modelling studies on the sorption of radionuclides 134Cs, 60Co, and 85Sr by certain marine sediments within Egypt. The chemical composition of the marine sediments was determined. The soluble salts were measured for the sediments and the concentrations of the released cations, Al3+, Fe3+, and Si4+, were measured for the sediment materials in 0.1 M NaClO4 aqueous solution at different hydrogen ion concentrations. The two main factors that control the uptake of the radionuclides onto the sediment are the pH and the exchangeable capacities of the sediment materials. Surface complex model was used to estimate the surface charge densities and the electric surface potential of the marine sediment materials. These two parameters were calculated at the surface capacity sites of the sediment materials. The desorption of the adsorbed cations was determined by means of selective consecutive extraction tests using different chemical reagents including (1) 1 M MgCl2 (pH 7), (2) 1 M ammonium oxalate (pH 3-5), (3) 0.04 M NH2OH,HCl in 25% acetic acid (pH 3-4), (4) H2O2 in 5% HNO3(pH 2-3), and (5) digestion with nitric acid followed by hydrofluoric and perchloric acids (pH 2).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom