z-logo
open-access-imgOpen Access
Bermudagrass Management in the Southern Piedmont U.S. IV. Soil Surface Nitrogen Pools
Author(s) -
Alan J. Franzluebbers,
J. A. Stuedemann
Publication year - 2001
Publication title -
the scientific world journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.453
H-Index - 93
eISSN - 2356-6140
pISSN - 1537-744X
DOI - 10.1100/tsw.2001.89
Subject(s) - grazing , agronomy , human fertilization , forage , cynodon dactylon , grazing pressure , environmental science , litter , biology , zoology
The fate of nitrogen (N) applied in forage-based agricultural systems is important for understanding the long-term production and environmental impacts of a particular management strategy. We evaluated the factorial combination of three types of N fertilization (inorganic, crimson clover [Trifolium incarnatum L.] cover crop plus inorganic, and chicken [Gallus gallus] broiler litter pressure and four types of harvest strategy (unharvested forage, low and high cattle [Bos Taurus] grazing pressure, and monthly haying in summer) on surface residue and soil N pools during the first 5 years of 'Coastal' bermudagrass (Cynodon dactylon [L.] Pers.) management. The type of N fertilization used resulted in small changes in soil N pools, except at a depth of 0 to 2 cm, where total soil N was sequestered at a rate 0.2 g x kg(-1) x year(-1) greater with inorganic fertilization than with other fertilization strategies. We could account for more of the applied N under grazed systems (76-82%) than under ungrazed systems (35-71%). As a percentage of applied N, 32 and 48% were sequestered as total soil N at a depth of 0 to 6 cm when averaged across fertilization strategies under low and high grazing pressures, respectively, which was equivalent to 6.8 and 10.3 g x m(-2) x year(-1). Sequestration rates of total soil N under the unharvested-forage and haying strategies were negligible. Most of the increase in total soil N was at a depth of 0 to 2 cm and was due to changes in the particulate organic N (PON) pool. The greater cycling of applied N into the soil organic N pool with grazed compared with ungrazed systems suggests an increase in the long-term fertility of soil.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom