z-logo
open-access-imgOpen Access
Robust Microarray Meta-Analysis Identifies Differentially Expressed Genes for Clinical Prediction
Author(s) -
John H. Phan,
Andrew N. Young,
May D. Wang
Publication year - 2012
Publication title -
the scientific world journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.453
H-Index - 93
eISSN - 2356-6140
pISSN - 1537-744X
DOI - 10.1100/2012/989637
Subject(s) - feature selection , computer science , sample size determination , microarray analysis techniques , robustness (evolution) , false discovery rate , support vector machine , meta analysis , classifier (uml) , logistic regression , dna microarray , data mining , artificial intelligence , computational biology , pattern recognition (psychology) , statistics , biology , machine learning , gene , mathematics , medicine , genetics , gene expression
Combining multiple microarray datasets increases sample size and leads to improved reproducibility in identification of informative genes and subsequent clinical prediction. Although microarrays have increased the rate of genomic data collection, sample size is still a major issue when identifying informative genetic biomarkers. Because of this, feature selection methods often suffer from false discoveries, resulting in poorly performing predictive models. We develop a simple meta-analysis-based feature selection method that captures the knowledge in each individual dataset and combines the results using a simple rank average. In a comprehensive study that measures robustness in terms of clinical application (i.e., breast, renal, and pancreatic cancer), microarray platform heterogeneity, and classifier (i.e., logistic regression, diagonal LDA, and linear SVM), we compare the rank average meta-analysis method to five other meta-analysis methods. Results indicate that rank average meta-analysis consistently performs well compared to five other meta-analysis methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom