In VitroChondrogenesis Transformation Study of Mouse Dental Pulp Stem Cells
Author(s) -
Shahrul Hisham Zainal Ariffin,
Shabnam Kermani,
Rohaya Megat Abdul Wahab,
Sahidan Senafi,
Zaidah Zainal Ariffin,
Mohamad Abdul Razak
Publication year - 2012
Publication title -
the scientific world journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.453
H-Index - 93
eISSN - 2356-6140
pISSN - 1537-744X
DOI - 10.1100/2012/827149
Subject(s) - dental pulp stem cells , chondrogenesis , in vitro , stem cell , microbiology and biotechnology , biology , biochemistry
A major challenge in the application of mesenchymal stem cells in cartilage reconstruction is that whether the cells are able to differentiate into fully mature chondrocytes before grafting. The aim of this study was to isolate mouse dental pulp stem cells (DPSC) and differentiate them into chondrocytes. For this investigation, morphological, molecular, and biochemical analyses for differentiated cells were used. To induce the chondrocyte differentiation, DPSC were cultured in chondrogenic medium (Zen-Bio, Inc.). Based on morphological analyses using toluidine blue staining, proteoglycan products appear in DPSC after 21 days of chondrocyte induction. Biochemical analyses in differentiated group showed that alkaline phosphatase activity was significantly increased at day 14 as compared to control ( P < 0.05). Cell viability analyses during the differentiation to chondrocytes also showed that these cells were viable during differentiation. However, after the 14th day of differentiation, there was a significant decrease ( P < 0.05) in the viability proportion among differentiated cells as compared to the control cells. In RT-PCR molecular analyses, mouse DPSC expressed Cd146 and Cd166 which indicated that these cells belong to mesenchymal stem cells. Coll I and Coll II markers showed high expression after 14 and 21 days, respectively. In conclusion, this study showed that DPSC successfully differentiated into chondrocytes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom