z-logo
open-access-imgOpen Access
Engineering the Production of Major Catechins byEscherichia coliCarrying Metabolite Genes ofCamellia sinensis
Author(s) -
Kabir Umar,
Roselina Karim,
Son Radu,
Azizah Abdul Hamid,
Nazamid Saari
Publication year - 2012
Publication title -
the scientific world journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.453
H-Index - 93
eISSN - 2356-6140
pISSN - 1537-744X
DOI - 10.1100/2012/529031
Subject(s) - camellia sinensis , catechin , flavanone , escherichia coli , biochemistry , metabolite , biology , chemistry , gene , flavonoid , botany , polyphenol , antioxidant
A mimicked biosynthetic pathway of catechin metabolite genes from C. sinensis , consisting of flavanone 3 hydroxylase (F3H), dihydroflavonol reductase (DFR), and leucoanthocyanidin reductase (LCR), was designed and arranged in two sets of constructs: (a) single promoter in front of F3H and ribosome-binding sequences both in front of DFR and LCR; (b) three different promoters with each in the front of the three genes and ribosome-binding sequences at appropriate positions. Recombinant E. coli BL (DE3) harbouring the constructs were cultivated for 65 h at 26°C in M9 medium consisting of 40 g/L glucose, 1 mM IPTG, and 3 mM eriodictyol. Compounds produced were extracted in ethyl acetate in alkaline conditions after 1 h at room temperature and identified by HPLC. Two of the four major catechins, namely, (−)-epicatechin (0.01 ) and (−)-epicatechin gallate (0.36 mg/L), and two other types ((+)-catechin hydrate (0.13 mg/L) and (−)-catechin gallate (0.04 mg/L)) were successfully produced.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom