Co-Cultures ofPseudomonas aeruginosaandRoseobacter denitrificansReveal Shifts in Gene Expression Levels Compared to Solo Cultures
Author(s) -
Crystal A. Conway,
Nwadiuto Esiobu,
Jose V. Lopez
Publication year - 2012
Publication title -
the scientific world journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.453
H-Index - 93
eISSN - 2356-6140
pISSN - 1537-744X
DOI - 10.1100/2012/120108
Subject(s) - pseudomonas aeruginosa , roseobacter , pyocyanin , gene expression , biology , gene , microbiology and biotechnology , quorum sensing , paracoccus denitrificans , genetics , bacteria , virulence , phylogenetics , clade
Consistent biosynthesis of desired secondary metabolites (SMs) from pure microbial cultures is often unreliable. In a proof-of-principle study to induce SM gene expression and production, we describe mixed “co-culturing” conditions and monitoring of messages via quantitative real-time PCR (qPCR). Gene expression of model bacterial strains ( Pseudomonas aeruginosa PAO1 and Roseobacter denitrificans Och114) was analyzed in pure solo and mixed cocultures to infer the effects of interspecies interactions on gene expression in vitro , Two P. aeruginosa genes ( PhzH coding for portions of the phenazine antibiotic pathway leading to pyocyanin (PCN) and the RhdA gene for thiosulfate: cyanide sulfurtransferase (Rhodanese)) and two R. denitrificans genes ( BetaLact for metallo-beta-lactamase and the DMSP gene for dimethylpropiothetin dethiomethylase) were assessed for differential expression. Results showed that R. denitrificans DMSP and BetaLact gene expression became elevated in a mixed culture. In contrast, P. aeruginosa co-cultures with R. denitrificans or a third species did not increase target gene expression above control levels. This paper provides insight for better control of target SM gene expression in vitro and bypass complex genetic engineering manipulations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom