Development and characterization of promoterless helper RNAs for the production of alphavirus replicon particle
Author(s) -
Kurt I. Kamrud,
Kim Alterson,
Max Custer,
Jeanne Dudek,
Christin H. Goodman,
Gary Owens,
Jonathan Smith
Publication year - 2010
Publication title -
journal of general virology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.55
H-Index - 167
eISSN - 1465-2099
pISSN - 0022-1317
DOI - 10.1099/vir.0.020081-0
Subject(s) - replicon , alphavirus , biology , rna , long non coding rna , virology , small nucleolar rna , helper virus , transcription (linguistics) , togaviridae , non coding rna , plasmid , genetics , gene , virus , linguistics , philosophy
Alphavirus-based replicon systems are frequently used as preclinical vectors and as antigen discovery tools, and they have recently been assessed in clinical vaccine trials. Typically, alphavirus replicon RNAs are delivered within virus-like replicon particles (VRP) that are produced following transfection of replicon RNA and two helper RNAs into permissive cells in vitro. The non-structural proteins expressed from the replicon RNA amplify the replicon RNA in cis and the helper RNAs in trans, the latter providing the viral structural proteins necessary to package the replicon RNA into VRP. Current helper RNA designs incorporate the alphavirus 26S promoter to direct the transcription of high levels of structural gene mRNAs. We demonstrate here that the 26S promoter is not required on helper RNAs to produce VRP and propose that such promoterless helper RNAs, by design, reduce the probability of generating replication-competent virus that may otherwise result from RNA recombination.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom