Functional analysis of the competence transcription factor ComK of Bacillus subtilis by characterization of truncation variants
Author(s) -
Kim A. Susanna,
Fabrizia Fusetti,
A.M.W.H. Thunnissen,
Leendert W. Hamoen,
Oscar P. Kuipers
Publication year - 2006
Publication title -
microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.019
H-Index - 179
eISSN - 1465-2080
pISSN - 1350-0872
DOI - 10.1099/mic.0.28357-0
Subject(s) - transcription factor , biology , transcription (linguistics) , genetics , microbiology and biotechnology , gene , dna binding protein , linguistics , philosophy
The competence transcription factor ComK is the master regulator of competence development in Bacillus subtilis. In the regulatory pathway, ComK is involved in different interactions: (i) protein-DNA interactions to stimulate transcription of ComK-dependent genes and (ii) protein-protein interactions, divided into interactions with other proteins and interactions between ComK proteins involving oligomerization. The fact that ComK displays different types of interactions suggests the presence of specific, distinct domains in the protein. This paper describes a search for functional domains, by constructing ComK truncation variants, which were tested for DNA binding, oligomerization and transcription activation. Truncations at the C-terminal end of ComK demonstrated the requirement of this part for transcription activation, but not for DNA binding. The C-terminal region is probably involved in oligomerization of ComK-dimers into tetramers. Surprisingly, a ComK truncation variant lacking 9 aa from the N-terminal end (DeltaN9ComK) showed higher transcription activation than wild-type ComK, when expressed in Lactococcus lactis. However, in B. subtilis, transcription activation by DeltaN9ComK was twofold lower than that by wild-type ComK, resulting from a five- to sixfold lower protein level of ComKDeltaN9. Thus, relatively, DeltaN9ComK is more active in transcription activation than wild-type ComK. These results suggest that the presence of this N-terminal extension on ComK is a trade-off between high transcription activation and a thus far unidentified role in regulation of ComK.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom