The amino-terminal domain of ELL transcription elongation factor is essential for ELL function in Schizosaccharomyces pombe
Author(s) -
Sweta Kumari,
Preeti Dabas,
Kamal Kumar Jain,
Nimisha Sharma
Publication year - 2017
Publication title -
microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.352
H-Index - 35
eISSN - 1465-2080
pISSN - 1350-0872
DOI - 10.1099/mic.0.000554
Subject(s) - schizosaccharomyces pombe , elongation factor , transcription factor , domain (mathematical analysis) , transcription (linguistics) , elongation , function (biology) , terminal (telecommunication) , schizosaccharomyces , genetics , biology , microbiology and biotechnology , chemistry , stereochemistry , physics , gene , saccharomyces cerevisiae , computer science , mathematics , materials science , rna , ribosome , linguistics , philosophy , mathematical analysis , telecommunications , ultimate tensile strength , metallurgy
Transcriptional elongation is a critical step for regulating expression of protein-coding genes. Multiple transcription elongation factors have been identified in vitro, but the physiological roles of many of them are still not clearly understood. The ELL (Eleven nineteen Lysine rich Leukemia) family of transcription elongation factors are conserved from fission yeast to humans. Schizosaccharomyces pombe contains a single ELL homolog (SpELL) that is not essential for its survival. Therefore to gain insights into the in vivo cellular functions of SpELL, we identified phenotypes associated with deletion of ell1 in S. pombe. Our results demonstrate that SpELL is required for normal growth of S. pombe cells. Furthermore, cells lacking ell1 + exhibit a decrease in survival when exposed to DNA-damaging conditions, but their growth is not affected under environmental stress conditions. ELL orthologs in different organisms contain three conserved domains, an amino-terminal domain, a middle domain and a carboxyl-terminal domain. We also carried out an in vivo functional mapping of these conserved domains within S. pombe ELL and uncovered a critical role for its amino-terminus in regulating all its cellular functions, including growth under different conditions, transcriptional elongation potential and interaction with S. pombe EAF. Taken together our results suggest that the domain organization of ELL proteins is conserved across species, but the in vivo functions as well as the relationship between the various domains and roles of ELL show species-specific differences.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom