z-logo
open-access-imgOpen Access
The mycelium-associated Streptomyces reticuli catalase-peroxidase, its gene and regulation by FurS
Author(s) -
Pengfei Zou,
Ilya Borovok,
Darío Ortiz de Orué Lucana,
Dagmar Müller,
Hildgund Schrempf
Publication year - 1999
Publication title -
microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.019
H-Index - 179
eISSN - 1465-2080
pISSN - 1350-0872
DOI - 10.1099/13500872-145-3-549
Subject(s) - biology , caulobacter crescentus , biochemistry , gene , peptide sequence , microbiology and biotechnology , escherichia coli , bacterial protein
During early stages of growth, Streptomyces reticuli synthesizes a hyphae-associated, haem-containing enzyme which exhibits catalase and peroxidase activities with broad substrate specificity (CpeB). The purified dimeric enzyme (160 kDa) consists of two identical subunits. Using anti-CpeB antibodies and an expression- as well as a mini-library, the corresponding cpeB gene was identified and sequenced. It encodes a protein of 740 aa with a molecular mass of 81.3 kDa. The deduced protein shares the highest level of amino acid identity with KatG from Caulobacter crescentus and Mycobacterium tuberculosis, and PerA from Bacillus stearothermophilus. Streptomyces lividans transformants carrying cpeB and the upstream-located furS gene with its regulatory region on the bifunctional vector pWHM3 produced low or enhanced levels of CpeB in the presence or absence of Fe ions, respectively. An in-frame deletion of the major part of furS induces increased CpeB synthesis. The data imply that FurS regulates the transcription of cpeB. The deduced FurS protein is rich in histidine residues, contains a putative N-terminally situated helix-turn-helix motif and has a molecular mass of 15.1 kDa. It shares only 29% amino acid identity with the Escherichia coli ferric uptake regulator (Fur) protein, but about 64% with FurA deduced from the genomic sequences of several mycobacteria. The predicted secondary structures of FurS and FurA are highly similar and considerably divergent from those of the E. coli Fur. In contrast to some Gram-negative bacteria, within several mycobacteria an intact furA gene or a furA pseudogene is upstream of a catalase-peroxidase (katG) gene predicted to encode a functional or a non-functional (Mycobacterium leprae) enzyme. Thus the data obtained for Streptomyces reticuli are expected to serve as an additional model to elucidate the regulation of mycobacterial catalase-peroxidase genes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here