z-logo
open-access-imgOpen Access
Ultrastructural variation of cultured Ehrlichia chaffeensis
Author(s) -
Vsevolod L. Popov,
Sheng-Min Chen,
Huimin Feng,
David M. Walker
Publication year - 1995
Publication title -
journal of medical microbiology/journal of medical microbiology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.91
H-Index - 117
eISSN - 1473-5644
pISSN - 0022-2615
DOI - 10.1099/00222615-43-6-411
Subject(s) - ehrlichia chaffeensis , biology , cytoplasm , endoplasmic reticulum , vacuole , ultrastructure , multinucleate , microbiology and biotechnology , ehrlichia , biophysics , anatomy , virology , tick
The ultrastructure of Ehrlichia chaffeensis (Arkansas strain) was studied in non-irradiated and irradiated monolayers of mouse embryo, Vero, BGM and L929 cells, and in non-irradiated DH82 cells. Within the intracellular parasitophorous vacuoles (morulae), two types of ehrlichial cells were found regularly--those with uniformly dispersed nucleoid filaments and ribosomes (dense-cored cells), which represent the normal life cycle of ehrlichiae. In addition, large reticulate cells were observed, forming long projections of the cell wall, protrusions of cytoplasmic membrane into the periplasmic space, or budding of protoplast fragments (minute forms) into the periplasmic space. Ehrlichiae with abnormalities of protoplast fission were found, apparently leading to formation of giant, multilobular or elongated rod-like ehrlichiae. Morulae were usually surrounded by cisterns of granular endoplasmic reticulum and mitochondria and often contained vesicles, long tubules 25nm in diameter, probably originating from the ehrlichial cell wall, and fibrillar ehrlichial antigen apparently shed from the surface of the cell wall. Some cells contained, in addition to normal morulae, a whole morula that had become dense and contained degenerating ehrlichiae. These results indicate that as well as normal growth and reproduction, ehrlichiae exhibit pathological events: they can be remarkably damaged inside the host cell vacuoles, presumably phagolysosomes, or enter a process morphologically similar to bacterial L-transformation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here