z-logo
open-access-imgOpen Access
Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD)
Author(s) -
Christina Holmberg,
Lena Beijer,
Blanka Rutberg,
Lars Rutberg
Publication year - 1990
Publication title -
journal of general microbiology/journal of general microbiology
Language(s) - English
Resource type - Journals
eISSN - 2059-9323
pISSN - 0022-1287
DOI - 10.1099/00221287-136-12-2367
Subject(s) - glycerol kinase , operon , gene , bacillus subtilis , catabolism , glycerol , biology , biochemistry , nucleic acid sequence , microbiology and biotechnology , genetics , enzyme , escherichia coli , bacteria
The glpPKD region of the Bacillus subtilis chromosome was cloned in its natural host in plasmid pHP13. The glpPKD region contains genes required for glycerol catabolism: glpK coding for glycerol kinase, glpD coding for glycerol-3-phosphate (G3P) dehydrogenase and glpP, proposed to code for a positively acting regulatory protein. The cloned 7 kb fragment carries wild-type alleles of glpK, glpD and glpP. It can also complement a strain deleted for the entire glpPKD region. The wild-type alleles were mapped to different subfragments, establishing the gene order glpP-glpK-glpD. The nucleotide sequence of glpK and glpD was determined. Immediately upstream of glpK, an additional open reading frame was found, possibly being part of the same operon. Putative transcription terminators were found in the region between glpK and glpD and downstream of glpD. In a coupled in vitro transcription/translation system, two proteins were found, corresponding in size to those predicted from the deduced amino acid sequences of glycerol kinase and G3P dehydrogenase (54 kDa and 63 kDa, respectively).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here