
Inhibition of virulence factor expression and swarming differentiation in Proteus mirabilis by p-nitrophenylglycerol
Author(s) -
Shwu-Jen Liaw,
HsinChih Lai,
ShenWu Ho,
KwenTay Luh,
W.-B. Wang
Publication year - 2000
Publication title -
journal of medical microbiology/journal of medical microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.91
H-Index - 117
eISSN - 1473-5644
pISSN - 0022-2615
DOI - 10.1099/0022-1317-49-8-725
Subject(s) - proteus mirabilis , swarming (honey bee) , biology , microbiology and biotechnology , virulence , flagellin , swarming motility , virulence factor , hemolysin , protease , bacteria , genetics , enzyme , biochemistry , gene , quorum sensing , staphylococcus aureus
Proteus mirabilis is a common cause of upper urinary tract infections that can involve invasion of host urothelial cells. The ability to invade urothelial cells is coupled closely to swarming, a form of multicellular behaviour in which vegetative bacteria differentiate into hyperflagellate, filamentous swarming cells capable of co-ordinated and rapid population migration. Co-ordinate expression of virulence factors including urease, protease, haemolysin and flagellin during swarm-cell differentiation in P. mirabilis has been reported. To investigate the effects of p-nitrophenylglycerol (PNPG), a potent anti-swarming agent, on the various swarming-associated traits of P. mirabilis and to elucidate the relationships among them, P. mirabilis growth rate, swarming/swimming activity, cell invasion ability and the ability to express various virulence factors were monitored in the presence or absence of PNPG. It was found that PNPG could inhibit the growth rate, swarming differentiation and swarming/swimming activities of P. mirabilis. The expression of virulence factors such as protease, urease, haemolysin and flagellin in P. mirabilis was also inhibited by PNPG. The ability of P. mirabilis to invade human urothelial cells was reduced dramatically in the presence of PNPG. These results suggest that PNPG has the potential to be developed as an agent active against the effects of P. mirabilis infection.