
Detection and characterisation of the genes encoding glyoxalase I and II from Neisseria meningitidis
Author(s) -
Göksel Kızıl,
Kathy E. Wilks,
Damien B. Wells,
Dlawer A. A. Ala’Aldeen
Publication year - 2000
Publication title -
journal of medical microbiology/journal of medical microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.91
H-Index - 117
eISSN - 1473-5644
pISSN - 0022-2615
DOI - 10.1099/0022-1317-49-7-669
Subject(s) - methylglyoxal , lactoylglutathione lyase , neisseria meningitidis , gene , escherichia coli , biology , amino acid , biochemistry , microbiology and biotechnology , peptide sequence , genetics , enzyme , bacteria
Glyoxalase enzymes I and II are involved in a detoxification process consisting of conversion of reactive dicarbonyl compounds (e.g., methylglyoxal) to less reactive hydroxy acids. The structural gene for meningococcal glyoxalase I (gloA) was identified by screening an expression library with a rabbit antiserum. The meningococcal gloA gene consisted of 138 deduced amino acids, with a calculated mol. wt of 15.7 kDa. The DNA and deduced protein sequence of gloA was compared to known sequences of glyoxalase I enzymes and showed high homology with gloA of several eukaryotic and prokaryotic species. Insertion of a gloA-containing plasmid in Escherichia coli increased the host organism's tolerance to methylglyoxal from <2 mM to >4 mM, thus demonstrating its functional identity. A databank search also revealed the presence of a putative gloB gene, encoding glyoxalase II (GlxII), in the recently released genomic sequences of Neisseria meningitidis and N. gonorrhoeae.