WolbachiastrainwAlbB maintains high density and dengue inhibition following introduction into a field population ofAedes aegypti
Author(s) -
Noor Afizah Ahmad,
Maria Vittoria Mancini,
Thomas H. Ant,
Julien Martinez,
Ghazali M. R. Kamarul,
W A Nazni,
Ary A. Hoffmann,
Steven P. Sinkins
Publication year - 2020
Publication title -
philosophical transactions of the royal society b biological sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.753
H-Index - 272
eISSN - 1471-2970
pISSN - 0962-8436
DOI - 10.1098/rstb.2019.0809
Subject(s) - wolbachia , aedes aegypti , dengue fever , dengue virus , biology , cytoplasmic incompatibility , population , virology , aedes , virus , transmission (telecommunications) , veterinary medicine , host (biology) , ecology , medicine , larva , environmental health , engineering , electrical engineering
Aedes aegypti mosquitoes carrying the w AlbB Wolbachia strain show a reduced capacity to transmit dengue virus. w AlbB has been introduced into wild Ae. aegypti populations in several field sites in Kuala Lumpur, Malaysia, where it has persisted at high frequency for more than 2 years and significantly reduced dengue incidence. Although these encouraging results indicate that w AlbB releases can be an effective dengue control strategy, the long-term success depends on w AlbB maintaining high population frequencies and virus transmission inhibition, and both could be compromised by Wolbachia– host coevolution in the field. Here, w AlbB-carrying Ae. aegypti collected from the field 20 months after the cessation of releases showed no reduction in Wolbachia density or tissue distribution changes compared to a w AlbB laboratory colony. The w AlbB strain continued to induce complete unidirectional cytoplasmic incompatibility, showed perfect maternal transmission under laboratory conditions, and retained its capacity to inhibit dengue. Additionally, a field-collected w AlbB line was challenged with Malaysian dengue patient blood, and showed significant blocking of virus dissemination to the salivary glands. These results indicate that w AlbB continues to inhibit currently circulating strains of dengue in field populations of Ae. aegypti , and provides additional support for the continued scale-up of Wolbachia wAlbB releases for dengue control. This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases’.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom