z-logo
open-access-imgOpen Access
Climate change in size-structured ecosystems
Author(s) -
Ulrich Brose,
Jennifer A. Dunne,
José M. Montoya,
Owen L. Petchey,
Florian D. Schneider,
Ute Jacob
Publication year - 2012
Publication title -
philosophical transactions of the royal society b biological sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.753
H-Index - 272
eISSN - 1471-2970
pISSN - 0962-8436
DOI - 10.1098/rstb.2012.0232
Subject(s) - ecosystem , climate change , ecology , global warming , dominance (genetics) , scaling , community structure , food web , ecological stability , global change , biology , environmental science , mathematics , biochemistry , geometry , gene
One important aspect of climate change is the increase in average temperature, which will not only have direct physiological effects on all species but also indirectly modifies abundances, interaction strengths, food-web topologies, community stability and functioning. In this theme issue, we highlight a novel pathway through which warming indirectly affects ecological communities: by changing their size structure (i.e. the body-size distributions). Warming can shift these distributions towards dominance of small- over large-bodied species. The conceptual, theoretical and empirical research described in this issue, in sum, suggests that effects of temperature may be dominated by changes in size structure, with relatively weak direct effects. For example, temperature effects via size structure have implications for top-down and bottom-up control in ecosystems and may ultimately yield novel communities. Moreover, scaling up effects of temperature and body size from physiology to the levels of populations, communities and ecosystems may provide a crucially important mechanistic approach for forecasting future consequences of global warming.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom