Understanding the structural diversity of chitins as a versatile biomaterial
Author(s) -
Jiaxin Hou,
Berk Emre Aydemir,
Ahu Gümrah Dumanlı
Publication year - 2021
Publication title -
philosophical transactions of the royal society a mathematical physical and engineering sciences
Language(s) - English
Resource type - Journals
eISSN - 1471-2962
pISSN - 1364-503X
DOI - 10.1098/rsta.2020.0331
Subject(s) - chitin , biomimetics , nanotechnology , hierarchy , template , polymer science , computer science , biochemical engineering , materials science , chemistry , engineering , biochemistry , chitosan , economics , market economy
Chitin is one of the most abundant biopolymers, and it has adopted many different structural conformations using a combination of different natural processes like biopolymerization, crystallization and non-equilibrium self-assembly. This leads to a number of striking physical effects like complex light scattering and polarization as well as unique mechanical properties. In doing so, chitin uses a fine balance between the highly ordered chain conformations in the nanofibrils and random disordered structures. In this opinion piece, we discuss the structural hierarchy of chitin, its crystalline states and the natural biosynthesis processes to create such specific structures and diversity. Among the examples we explored, the unified question arises from the generation of completely different bioarchitectures like the Christmas tree-like nanostructures, gyroids or helicoidal geometries using similar dynamic non-equilibrium growth processes. Understanding thein vivo development of such structures from gene expressions, enzymatic activities as well as the chemical matrix employed in different stages of the biosynthesis will allow us to shift the material design paradigms. Certainly, the complexity of the biology requires a collaborative and multi-disciplinary research effort. For the future's advanced technologies, using chitin will ultimately drive many innovations and alternatives using biomimicry in materials science.This article is part of the theme issue ‘Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom