
A Markov chain-based model for structural vulnerability assessmentof corrosion-damaged reinforced concrete bridges
Author(s) -
Ebrahim Afsar Dizaj,
Jamie E. Padgett,
Mohammad M. Kashani
Publication year - 2021
Publication title -
philosophical transactions - royal society. mathematical, physical and engineering sciences/philosophical transactions - royal society. mathematical, physical and engineering sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.074
H-Index - 169
eISSN - 1471-2962
pISSN - 1364-503X
DOI - 10.1098/rsta.2020.0290
Subject(s) - cracking , pier , corrosion , markov chain , structural engineering , reinforced concrete , bridge (graph theory) , vulnerability (computing) , reinforcement , materials science , computer science , forensic engineering , engineering , composite material , medicine , computer security , machine learning
The deterioration and cracking of reinforced concrete (RC) bridges due to the chloride-induced corrosion of steel reinforcement is an inherently time-dependent stochastic phenomenon. In the current practice of bridge management systems, however, the determination of the condition states of deteriorated bridges is highly dependent on the opinion of experienced inspectors. Taking such complexity into account, the current paper presents a new stochastic predictive methodology using a non-homogeneous Markov process, which directly relates the visual inspection data (corrosion rate and crack widths) to the structural vulnerability of deteriorated concrete bridges. This methodology predicts the future condition of corrosion-induced damage (concrete cracking) by linking structural vulnerability analysis and a discrete-time Markov chain model. The application of the proposed methodology is demonstrated through a case-study corrosion-damaged RC bridge pier. This article is part of a discussion meeting issue ‘A cracking approach to inventing new tough materials: fracture stranger than friction’.