z-logo
open-access-imgOpen Access
Fracture toughness of one- and two-dimensional nanoreinforced cement via scratch testing
Author(s) -
Ange-Thérèse Akono
Publication year - 2021
Publication title -
philosophical transactions - royal society. mathematical, physical and engineering sciences/philosophical transactions - royal society. mathematical, physical and engineering sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.074
H-Index - 169
eISSN - 1471-2962
pISSN - 1364-503X
DOI - 10.1098/rsta.2020.0288
Subject(s) - materials science , fracture toughness , composite material , cement , graphene , nanomaterials , carbon nanotube , toughness , portland cement , microstructure , fracture (geology) , nanotechnology
Cement is the most widely consumed material globally, with the cement industry accounting for 8% of human-caused greenhouse gas emissions. Aiming for cement composites with a reduced carbon footprint, this study investigates the potential of nanomaterials to improve mechanical characteristics. An important question is to increase the fraction of carbon-based nanomaterials within cement matrices while controlling the microstructure and enhancing the mechanical performance. Specifically, this study investigates the fracture response of Portland cement reinforced with one- and two-dimensional carbon-based nanomaterials, such as carbon nanofibres, multiwalled carbon nanotubes, helical carbon nanotubes and graphene oxide nanoplatelets. Novel processing routes are shown to incorporate 0.1–0.5 wt% of nanomaterials into cement using a quadratic distribution of ultrasonic energy. Scratch testing is used to probe the fracture response by pushing a sphero-conical probe against the surface of the material under a linearly increasing vertical force. Fracture toughness is then computed using a nonlinear fracture mechanics model. Nanomaterials are shown to bridge nanoscale air voids, leading to pore refinement, and a decrease in the porosity and the water absorption. An improvement in fracture toughness is observed in cement nanocomposites, with a positive correlation between the fracture toughness and the mass fraction of nanofiller for graphene-reinforced cement. Moreover, for graphene-reinforced cement, the fracture toughness values are in the range of 0.701 to 0.717 MPam . Thus, this study illustrates the potential of nanomaterials to toughen cement while improving the microstructure and water resistance properties.This article is part of a discussion meeting issue ‘A cracking approach to inventing new tough materials: fracture stranger than friction’.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here