
At the molecular resolution with MINFLUX?
Author(s) -
Kirti Prakash
Publication year - 2022
Publication title -
philosophical transactions - royal society. mathematical, physical and engineering sciences/philosophical transactions - royal society. mathematical, physical and engineering sciences
Language(s) - English
Resource type - Journals
eISSN - 1471-2962
pISSN - 1364-503X
DOI - 10.1098/rsta.2020.0145
Subject(s) - resolution (logic) , image resolution , microscopy , computer science , microscope , nanotechnology , optics , artificial intelligence , materials science , physics
MINFLUX is purported as the next revolutionary fluorescence microscopy technique claiming a spatial resolution in the range of 1–3 nm in fixed and living cells. Though the claim of molecular resolution is attractive, I am concerned whether true 1 nm resolution has been attained. Here, I compare the performance with other super-resolution methods focusing particularly on spatial resolution claims, subjective filtering of localizations, detection versus labelling efficiency and the possible limitations when imaging biological samples containing densely labelled structures. I hope the analysis and evaluation parameters presented here are not only useful for future research directions for single-molecule techniques but also microscope users, developers and core facility managers when deciding on an investment for the next ‘state-of-the-art’ instrument. This article is part of the Theo Murphy meeting issue ‘Super-resolution structured illumination microscopy (part 2)’.