z-logo
open-access-imgOpen Access
Dissipative open systems theory as a foundation for the thermodynamics of linear systems
Author(s) -
JeanCharles Delvenne,
Henrik Sandberg
Publication year - 2017
Publication title -
philosophical transactions of the royal society a mathematical physical and engineering sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.074
H-Index - 169
eISSN - 1471-2962
pISSN - 1364-503X
DOI - 10.1098/rsta.2016.0218
Subject(s) - dissipative system , statistical physics , fluctuation theorem , second law of thermodynamics , dynamical systems theory , dissipation , lyapunov function , linear system , mathematics , physics , mathematical analysis , non equilibrium thermodynamics , thermodynamics , quantum mechanics , nonlinear system
In this paper, we advocate the use of open dynamical systems, i.e. systems sharing input and output variables with their environment, and the dissipativity theory initiated by Jan Willems as models of thermodynamical systems, at the microscopic and macroscopic level alike. We take linear systems as a study case, where we show how to derive a global Lyapunov function to analyse networks of interconnected systems. We define a suitable notion of dynamic non-equilibrium temperature that allows us to derive a discrete Fourier law ruling the exchange of heat between lumped, discrete-space systems, enriched with the Maxwell–Cattaneo correction. We complete these results by a brief recall of the steps that allow complete derivation of the dissipation and fluctuation in macroscopic systems (i.e. at the level of probability distributions) from lossless and deterministic systems. This article is part of the themed issue ‘Horizons of cybernetical physics’.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom