An optimal control framework for dynamic induction control of wind farms and their interaction with the atmospheric boundary layer
Author(s) -
Wim Munters,
Johan Meyers
Publication year - 2017
Publication title -
philosophical transactions of the royal society a mathematical physical and engineering sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.074
H-Index - 169
eISSN - 1471-2962
pISSN - 1364-503X
DOI - 10.1098/rsta.2016.0100
Subject(s) - wind power , turbine , wake , planetary boundary layer , terrain , work (physics) , computer science , environmental science , control (management) , power (physics) , boundary layer , energy (signal processing) , marine engineering , control theory (sociology) , meteorology , aerospace engineering , engineering , mechanical engineering , mathematics , physics , electrical engineering , ecology , artificial intelligence , statistics , quantum mechanics , biology
Complex turbine wake interactions play an important role in overall energy extraction in large wind farms. Current control strategies optimize individual turbine power, and lead to significant energy losses in wind farms compared with lone-standing wind turbines. In recent work, an optimal coordinated control framework was introduced (Goit & Meyers 2015 J. Fluid Mech. 768 , 5-50 (doi:10.1017/jfm.2015.70)). Here, we further elaborate on this framework, quantify the influence of optimization parameters and introduce new simulation results for which gains in power production of up to 21% are observed.This article is part of the themed issue 'Wind energy in complex terrains'.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom