z-logo
open-access-imgOpen Access
Plasmonic kinks and walking solitons in nonlinear lattices of metal nanoparticles
Author(s) -
Roman E. Noskov,
Daria A. Smirnova,
Yuri S. Kivshar
Publication year - 2014
Publication title -
philosophical transactions of the royal society a mathematical physical and engineering sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.074
H-Index - 169
eISSN - 1471-2962
pISSN - 1364-503X
DOI - 10.1098/rsta.2014.0010
Subject(s) - nonlinear system , plasmon , physics , condensed matter physics , field (mathematics) , dynamics (music) , classical mechanics , optics , quantum mechanics , mathematics , acoustics , pure mathematics
We study nonlinear effects in one-dimensional (1D) arrays and two-dimensional (2D) lattices composed of metallic nanoparticles with the nonlinear Kerr-like response and an external driving field. We demonstrate the existence of families of moving solitons in 1D arrays and characterize their properties such as an average drifting velocity. We also analyse the impact of varying external field intensity and frequency on the structure and dynamics of kinks in 2D lattices. In particular, we identify the kinks with positive, negative and zero velocity as well as breathing kinks with a self-oscillating profile.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom