z-logo
open-access-imgOpen Access
Spectral statistics of permutation matrices
Author(s) -
Idan Oren,
Uzy Smilansky
Publication year - 2013
Publication title -
philosophical transactions of the royal society a mathematical physical and engineering sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.074
H-Index - 169
eISSN - 1471-2962
pISSN - 1364-503X
DOI - 10.1098/rsta.2012.0508
Subject(s) - permutation (music) , mathematics , generating function , point (geometry) , divisor (algebraic geometry) , asymptotic analysis , variance (accounting) , permutation matrix , point process , combinatorics , statistics , physics , geometry , accounting , circulant matrix , acoustics , business
We compute the mean two-point spectral form factor and the spectral number variance for permutation matrices of large order. The two-point correlation function is expressed in terms of generalized divisor functions, which are frequently discussed in number theory. Using classical results from number theory and casting them in a convenient form, we derive expressions which include the leading and next to leading terms in the asymptotic expansion, thus providing a new point of view on the subject, and improving some known results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom