Towards novel multiferroic and magnetoelectric materials: dipole stability in tetragonal tungsten bronzes
Author(s) -
Andrei Rotaru,
A. Miller,
Donna C. Arnold,
Finlay D. Morrison
Publication year - 2014
Publication title -
philosophical transactions of the royal society a mathematical physical and engineering sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.074
H-Index - 169
eISSN - 1471-2962
pISSN - 1364-503X
DOI - 10.1098/rsta.2012.0451
Subject(s) - tetragonal crystal system , ferroelectricity , dipole , octahedron , multiferroics , tungsten , materials science , perovskite (structure) , magnetism , chemical physics , condensed matter physics , dielectric , crystallography , crystal structure , chemistry , physics , metallurgy , optoelectronics , organic chemistry
We discuss the strategy for development of novel functional materials with the tetragonal tungsten bronze structure. From the starting composition Ba6GaNb9O30, the effect of A- and B-site substitutions on the dielectric properties is used to develop an understanding of the origin and stability of the dipolar response in these compounds. Both tetragonal strain induced by large B-site cations and local strain variations created by isovalent A-site substitutions enhance dipole stability but result in a dilute, weakly correlated dipolar response and canonical relaxor behaviour. Decreasing cation size at the perovskite A2-site increases the dipolar displacements in the surrounding octahedra, but insufficiently to result in dipole ordering. Mechanisms introducing small A-site lanthanide cations and incorporation of A-site vacancies to induce ferroelectricity and magnetism are presented.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom