Evaluation of the durability of composite tidal turbine blades
Author(s) -
Peter Davies,
G. L. Gregory,
Benoît Gaurier,
Amélie Boisseau,
Dominique Perreux
Publication year - 2013
Publication title -
philosophical transactions of the royal society a mathematical physical and engineering sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.074
H-Index - 169
eISSN - 1471-2962
pISSN - 1364-503X
DOI - 10.1098/rsta.2012.0187
Subject(s) - durability , turbine blade , flume , turbine , reliability (semiconductor) , marine engineering , structural engineering , environmental science , blade (archaeology) , geotechnical engineering , geology , engineering , materials science , mechanical engineering , composite material , mechanics , breakup , power (physics) , physics , quantum mechanics
The long-term reliability of tidal turbines is critical if these structures are to be cost effective. Optimized design requires a combination of material durability models and structural analyses. Composites are a natural choice for turbine blades, but there are few data available to predict material behaviour under coupled environmental and cycling loading. The present study addresses this problem, by introducing a multi-level framework for turbine blade qualification. At the material scale, static and cyclic tests have been performed, both in air and in sea water. The influence of ageing in sea water on fatigue performance is then quantified, and much lower fatigue lives are measured after ageing. At a higher level, flume tank tests have been performed on three-blade tidal turbines. Strain gauging of blades has provided data to compare with numerical models.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom