z-logo
open-access-imgOpen Access
Modelling heat transfer in heterogeneous media using fractional calculus
Author(s) -
Dominik Sierociuk,
Andrzej Dzieliński,
Grzegorz Sarwas,
Ivo Petráš,
Igor Podlubný,
Tomáš Škovránek
Publication year - 2013
Publication title -
philosophical transactions of the royal society a mathematical physical and engineering sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.074
H-Index - 169
eISSN - 1471-2962
pISSN - 1364-503X
DOI - 10.1098/rsta.2012.0146
Subject(s) - heat transfer , heat flux , partial differential equation , heat equation , differential equation , heat transfer coefficient , mechanics , critical heat flux , thermodynamics , physics , mathematics , mathematical analysis
This paper presents the results of modelling the heat transfer process in heterogeneous media with the assumption that part of the heat flux is dispersed in the air around the beam. The heat transfer process in a solid material (beam) can be described by an integer order partial differential equation. However, in heterogeneous media, it can be described by a sub- or hyperdiffusion equation which results in a fractional order partial differential equation. Taking into consideration that part of the heat flux is dispersed into the neighbouring environment we additionally modify the main relation between heat flux and the temperature, and we obtain in this case the heat transfer equation in a new form. This leads to the transfer function that describes the dependency between the heat flux at the beginning of the beam and the temperature at a given distance. This article also presents the experimental results of modelling real plant in the frequency domain based on the obtained transfer function.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom