Photochemistry and DNA photocleavage by a new unsupported dirhodium(II,II) complex
Author(s) -
Zhanyong Li,
Scott J. Burya,
Claudia Turró,
Kim R. Dunbar
Publication year - 2013
Publication title -
philosophical transactions of the royal society a mathematical physical and engineering sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.074
H-Index - 169
eISSN - 1471-2962
pISSN - 1364-503X
DOI - 10.1098/rsta.2012.0128
Subject(s) - chemistry , homolysis , photochemistry , quantum yield , singlet oxygen , electrospray ionization , singlet state , photodissociation , metal , yield (engineering) , irradiation , mass spectrometry , medicinal chemistry , oxygen , fluorescence , radical , materials science , excited state , organic chemistry , quantum mechanics , nuclear physics , metallurgy , physics , chromatography
The new complex [Rh2(phen)2(CH3CN)6](BF4)4 (1) was synthesized and characterized in solution and its crystal structure was determined. Irradiation of 1 with visible light (λirr>590 nm) in water results in the release of two equatorial CH3CN ligands, CH3CNeq, as well as in the formation of mononuclear radical Rh(II) fragments stemming from the homolytic photocleavage of the metal-metal bond. The photoproducts, identified by electrospray ionization mass spectrometry, include [Rh(phen)(CH3CN)(OH)](+) and [Rh(phen)(CH3CN)(H2O)3(BF4)](+). The quantum yield for the photochemical transformation of 1 in H2O exceeds unity (Φ550 nm=1.38) indicative of dark reactions following the initial photoprocess. DNA photocleavage was observed for 1 (λirr>590 nm), whereas the complex is unreactive in the dark. This feature makes 1 a promising photodynamic therapy agent that does not operate via the production of singlet oxygen, 1O2.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom