Peak shape analysis of diagonal and off-diagonal features in the two-dimensional electronic spectra of the Fenna–Matthews–Olson complex
Author(s) -
Dugan Hayes,
Gregory S. Engel
Publication year - 2012
Publication title -
philosophical transactions of the royal society a mathematical physical and engineering sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.074
H-Index - 169
eISSN - 1471-2962
pISSN - 1364-503X
DOI - 10.1098/rsta.2011.0201
Subject(s) - diagonal , spectral line , physics , statistical physics , mathematics , geometry , quantum mechanics
We have recorded a series of two-dimensional electronic spectra of the Fenna-Matthews-Olson (FMO) complex from Prosthecochloris aestuarii, with several crosspeaks sufficiently resolved to permit a quantitative analysis of both the amplitude and the two-dimensional peak shape. The exponential growth and/or decay of peaks on and off the main diagonal provides information on population transfer rates between pairs of excitons. Quantum beats observed in the amplitudes and shapes of these peaks persist throughout the relaxation process, indicating that energy transfer in FMO involves both incoherent and coherent dynamics. By comparing the oscillations in the amplitude and shape of crosspeaks, we confirm theoretical predictions regarding their correlation and identify previously indistinguishable combinations of nonlinear response pathways that contribute to the signal at particular positions in the spectra. Such analysis is crucial to understanding the enormous amount of information contained in two-dimensional electronic spectra and offers a new route to uncovering a complete description of the energy transfer kinetics in photosynthetic antennae.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom