z-logo
open-access-imgOpen Access
IX. Bakerian Lecture .—On the law of the pressure of gases between 75 and 150 millimetres of mercury
Publication year - 1902
Publication title -
philosophical transactions of the royal society of london. series a, containing papers of a mathematical or physical character
Language(s) - English
Resource type - Journals
eISSN - 2053-9258
pISSN - 0264-3952
DOI - 10.1098/rsta.1902.0009
Subject(s) - mercury (programming language) , law , pressure measurement , argon , chemistry , thermodynamics , physics , atomic physics , political science , computer science , programming language
In a recently published paper I have examined, with the aid of a new manometer, the behaviour of gases at very low pressures, rising to 1·5 millims. of mercury, with the result that Boyle’s law was verified to a high degree of precision. There is, however, a great gap between the highest pressure there dealt with and that of the atmosphere—a gap which it appeared desirable in some way to bridge over. The sloping manometer, described in the paper referred to, does not lend itself well to the use of much greater pressures, at least if we desire to secure the higher proportional accuracy that should accompany the rise of pressure. The present communication gives the results of observations, by another method, of the law of pressure in gases between 75 millims. and 150 millims. of mercury. It will be seen that for air and hydrogen Boyle’s law is verified to the utmost. In the case of oxygen, the agreement is rather less satisfactory, and the accordance of separate observations is less close. But even here the departure from Boyle’s law amounts only to one part in 4000, and may perhaps be referred to some reaction between the gas and the mercury. In the case of argon too the deviation, though very small, seems to lie beyond the limits of experimental errors. Whether it is due to a real minute departure from Boyle’s law, or to some complication arising out of the conditions of experiment, must remain an open question. In the case of pressures not greatly below atmosphere, the determination with the usual column of mercury read by a cathetometer (after Regnault) is sufficiently accurate. But when the pressure falls to say one-tenth of an atmosphere, the difficulties of this method begin to increase. The guiding idea in the present investigation has been the avoidance of such difficulties by the use of manometric gauges combined in a special manner. The object is to test whether when the volume of a gas is halved its pressure is doubled, and its attainment requires two gauges indicating pressures which are in the ratio of 2:1. To this end we may employ a pair of independent gauges as nearly as possible similar to one another, the similarity being tested by combination in parallel, to borrow an electrical term. When connected below with one reservoir of air and above with another reservoir, or with a vacuum, the two gauges should reach their settings simultaneously, or at least so nearly that a suitable correction may be readily applied. For brevity we may for the present assume precise similarity. If now the two gauges be combinedin series , so that the low-pressure chamber of the first communicates with the high-pressure chamber of the second, the combination constitutes a gauge suitable for measuring a doubled pressure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here