z-logo
open-access-imgOpen Access
Anthropogenic remediation of heavy metals selects against natural microbial remediation
Author(s) -
Elze Hesse,
Daniel Padfield,
Florian Bayer,
Eleanor M. van Veen,
Christopher G. Bryan,
Angus Buckling
Publication year - 2019
Publication title -
proceedings of the royal society b biological sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.342
H-Index - 253
eISSN - 1471-2954
pISSN - 0962-8452
DOI - 10.1098/rspb.2019.0804
Subject(s) - environmental remediation , ecosystem , environmental science , context (archaeology) , pollutant , natural (archaeology) , ecosystem services , lime , ecology , pollution , environmental protection , environmental chemistry , contamination , biology , chemistry , paleontology
In an era of unprecedented environmental change, there have been increasing ecological and global public health concerns associated with exposure to anthropogenic pollutants. While there is a pressing need to remediate polluted ecosystems, human intervention might unwittingly oppose selection for natural detoxification, which is primarily carried out by microbes. We test this possibility in the context of a ubiquitous chemical remediation strategy aimed at targeting metal pollution: the addition of lime-containing materials. Here, we show that raising pH by liming decreased the availability of toxic metals in acidic mine-degraded soils, but as a consequence selected against microbial taxa that naturally remediate soil through the production of metal-binding siderophores. Our results therefore highlight the crucial need to consider the eco-evolutionary consequences of human environmental strategies on microbial ecosystem services and other traits.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom