z-logo
open-access-imgOpen Access
The sharpest tools in the box? Quantitative analysis of conodont element functional morphology
Author(s) -
David Jones,
Alistair R. Evans,
Karen K. W. Siu,
Emily J. Rayfield,
Philip C. J. Donoghue
Publication year - 2012
Publication title -
proceedings of the royal society b biological sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.342
H-Index - 253
eISSN - 1471-2954
pISSN - 0962-8452
DOI - 10.1098/rspb.2012.0147
Subject(s) - conodont , morphology (biology) , paleontology , clade , geology , evolutionary biology , biology , computer science , phylogenetics , biostratigraphy , biochemistry , gene
Conodonts have been considered the earliest skeletonizing vertebrates and their mineralized feeding apparatus interpreted as having performed a tooth function. However, the absence of jaws in conodonts and the small size of their oropharyngeal musculature limits the force available for fracturing food items, presenting a challenge to this interpretation. We address this issue quantitatively using engineering approaches previously applied to mammalian dentitions. We show that the morphology of conodont food-processing elements was adapted to overcome size limitations through developing dental tools of unparalleled sharpness that maximize applied pressure. Combined with observations of wear, we also show how this morphology was employed, demonstrating how Wurmiella excavata used rotational kinematics similar to other conodonts, suggesting that this occlusal style is typical for the clade. Our work places conodont elements within a broader dental framework, providing a phylogenetically independent system for examining convergence and scaling in dental tools.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom