Global protected area impacts
Author(s) -
Lucas Joppa,
Alexander Pfaff
Publication year - 2010
Publication title -
proceedings of the royal society b biological sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.342
H-Index - 253
eISSN - 1471-2954
pISSN - 0962-8452
DOI - 10.1098/rspb.2010.1713
Subject(s) - deforestation (computer science) , clearance , natural resource , natural resource economics , land cover , geography , payment , scale (ratio) , land use , environmental resource management , environmental protection , business , agricultural economics , environmental science , economics , ecology , cartography , biology , programming language , medicine , finance , computer science , urology
Protected areas (PAs) dominate conservation efforts. They will probably play a role in future climate policies too, as global payments may reward local reductions of loss of natural land cover. We estimate the impact of PAs on natural land cover within each of 147 countries by comparing outcomes inside PAs with outcomes outside. We use 'matching' (or 'apples to apples') for land characteristics to control for the fact that PAs very often are non-randomly distributed across their national landscapes. Protection tends towards land that, if unprotected, is less likely than average to be cleared. For 75 per cent of countries, we find protection does reduce conversion of natural land cover. However, for approximately 80 per cent of countries, our global results also confirm (following smaller-scale studies) that controlling for land characteristics reduces estimated impact by half or more. This shows the importance of controlling for at least a few key land characteristics. Further, we show that impacts vary considerably within a country (i.e. across a landscape): protection achieves less on lands far from roads, far from cities and on steeper slopes. Thus, while planners are, of course, constrained by other conservation priorities and costs, they could target higher impacts to earn more global payments for reduced deforestation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom