z-logo
open-access-imgOpen Access
On the nature of "golgi bodies” in fixed material
Author(s) -
C. E. Walker,
Margaret Allen
Publication year - 1927
Publication title -
proceedings of the royal society of london. series b, containing papers of a biological character
Language(s) - English
Resource type - Journals
eISSN - 2053-9185
pISSN - 0950-1193
DOI - 10.1098/rspb.1927.0029
Subject(s) - golgi apparatus , cytoplasm , power (physics) , chemistry , biology , microbiology and biotechnology , biophysics , physics , endoplasmic reticulum , quantum mechanics
A great deal has been published in recent years upon cytoplasmic structures appearing in fixed material. Among them, those described as Golgi elements, bodies, apparatus and dictyosomes have, perhaps, received most attention. It is unfortunate that these, together with other structures, have been classed as “Cytoplasmic inclusions” (Gatenby, 1917-21, and others). This is a misleading term which obviously does not convey the meaning intended.. The structures or bodies referred to are supposed to arise in the cytoplasm,, or, being credited with the power of multiplication and development, to be handed on in the cytoplasm from one cell generation to another. The Golgi apparatus is described as being “ of very wide distribution among the cells of higher animals, and is known in the Protozoa, • everywhere showing the same general characters ; and there is reason to believe that the same may be true of plant cells, though considerable doubt concerning this still exists.” (Wilson, 1925.) The apparatus or elements may vary from a localised, network to scattered granules, curved rods, plates or ring-like bodies. The Golgi elements are soluble in acetic acid, and hence it has been assumed that they escaped the notice of earlier observers. No acetic acid, a very usual ingredient of fixatives, is used in the treatment of material in which Golgi elements are to be demonstrated. While chondriosomes, in suitably fixed preparations, darken in osmic acid (OsO4 ), the Golgi apparatus appears intensely black; hence the two are sometimes supposed to be chemically related. It is claimed that chondriosomes may be differentiated from Golgi bodies by washing the preparation that has been treated with osmic acid in turpentine, when the chondriosomes turn brown, the Golgi bodies remaining intensely black. (Gatenby, 1921.) The chondriosomes, after fixation, are not dependent for their demonstration upon reduction of the reagent used (e. g., OsO4 or Ag NO3 .), but will stain with certain aniline dyes. Hence it seems probable that there is a definite difference between them and the Golgi elements. [It seems likely that many of the structures produced by the OsO4 process and labelled chondriosomes are not the same as those demonstrated by other methods. (April 12, 1927.)]

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here