z-logo
open-access-imgOpen Access
The coagulation of protein by sunlight
Author(s) -
E. Gordon Young
Publication year - 1922
Publication title -
proceedings of the royal society of london. series b, containing papers of a biological character
Language(s) - English
Resource type - Journals
eISSN - 2053-9185
pISSN - 0950-1193
DOI - 10.1098/rspb.1922.0018
Subject(s) - chemistry , cystine , biochemistry , cysteine , enzyme
It was first shown by Dreyer and Hanssen (1) in 1917 that ultra-violet light produced a change in protein solutions which appeared to be similar to coagulation by heat. They exposed various solutions in quartz chambers to the light of a Bang lamp with iron and silver electrodes. Vitellin was found most easily coagulated, while globulin, albumin and fibrinogen showed a decreasing sensitivity to ultra-violet rays in the order mentioned. These investigators also discovered that acids markedly increase the rate of precipitation. Soret (2) had shown in 1883 that there are absorption bands in the extreme ultra-violet region of the spectrum of various proteins,e. g. , casein, ovalbumin, mucin and globulin. Tyrosine likewise has this band in the ultra-violet and Soret attributed to this constituent of the protein molecule its power of absorbing ultra-violet rays. In this connection Harris and Hoyt (3) carried out some interesting experiments on the protective power of various substances for paramœcium cultures exposed to ultra-violet radiations. They found that gelatin peptone, amino-benzoic acid, cystine, leucine and especially tyrosine possessed the power of detoxicating ultra-violet rays when placed as a thin layer of aqueous solution over paramœcium cultures under a quartz-mercury lamp. The toxicity of the radiations for paramœcia or protoplasm in general can be understood in the light of the discovery of Dreyer and Hanssen coupled with that of Soret. From a physico- chemical standpoint Bovie (4) has published a study of the coagulation of proteins by ultra-violet light. By exposing solutions of crystalline ovalbumin, both dialysed and containing electrolytes, to the light of a mercury-vapour lamp, he came to the conclusion that there were two reactions involved in the coagulation of ovalbumin by ultra-violet light. The first is a photochemical one with a low temperature coefficient,—denaturation; and the second is one with a higher temperature coefficient of two and is dependent upon the electrolytes present,—coagulation. While using solutions dialysed against tap water Bovie made the observation that the protein appeared to become sensitive to light of longer wave-length, for his control tubes in glass were slowly coagulated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here